

CONTENTS

3	President's Corner	7	Manimation
4	Bank Switching	8	Chimes
5	Modems and Compuserve	9	Reviews
6	Modems	10	Reviews and Piano

FOT-LUCK DINNEF/HOUSEWARMING
AT
THE FISHER'S
SEE PAGE 3 FOR DATE AND TIME

The July meeting brought out a nice size group in spite of the beautiful summer weather. The latest in the continuing SAGA of TIMEX is that as of July 27 th noone has turned up with a successful offer to take over the TIMEX rights to the 2068.

We were very schocked to hear of the sudden death of stewart Lotwin of WESTRIDGE COMMUNICATIONS on Monday July 16. Stewart and his crew took on the task of distributing the EX-TIMEX MODEM We extend our condolence to his family and hope they will be able to carry on in the WESTRIDGE tradition.

President	Mark Fisher
Vice President Mike Cohen	
2nd Vice Pres.	Wayson Lee
Secretary	Bob Curnutt
Treasurer	Sarah Fisher

Newsletter Editor Jules Gesang

AD RATES APPEAR ON PAGE 5

For this issue contributors appear below.

Any suggestions for material you would like to see in future issues will be considered if you submit your suggestions to the EDITOR. The address for submissions appears below with the deadline calander.

HOW ABOUT SOME LETTERS TO THE EDITOR? Oler
NEWSLETTER CONTEIBUTORS

P. Doughty	M.Durholz
The Fishers	D.Guess, Jr.
A.Pollock	J.Rottman

$1984 \mathrm{MEETING} / \mathrm{NEWSLETTER}$ DEADLINE

July	14 th	$-\cdots---$
August	11 th	July 21
September	8 th	Aug
October	13 th	Sep
November	10 th	Oct
Necember	8 th	Nou
Dec	17	

SUBMIT ALL NEWSLETTER MATERIAL DIRECT TO JULES GESANG,BOX 452 RANDALLSTOWN,MD 21133 TO ARRIVE NO LATER THAN DEADLINE.

The latest in the MODEM field is at BYTE-BACK. Jerry says he should be able to start delivery of the MD-68 Modem for the TS2068 by the end of the Month. That is for the TS2068 and TS1000 combination. The latest from WESTRIDGE is that they hope to have the SMART II software shortly.
Several artices have appeared in various publications about the SURUIVORS in the TIMEX field. Last month SYNTAX ran a page of peripheral manufacturers that were continuing to carry on. We are submitting this month the names of NEWSLETTERS dedicated to TIMEX that are still with us.
**SYNTAX.Still publishing each month. Monthly. $8484 R_{0}$
***SYNCWARE NEWS. Recently taken over
by Tom Woods as the New Publisher.
Each issue 30 to 40 pages. Vol. 1
No. 3 was 52 pages. Published Bi-Monthly
\$16.95 year.
***TS HORIZONS. Published 12 times a year. Great up and coming newspaper. * 12 per year.
***COMPUTER TRADER MAGAZINE. So full
of information about all kinds of computers. $\$ 15$ for 12 issues. ***COMPUTER SHOPPER. Published Monthly on newsprint the same size as New York Times. Lots of news and advertisig. See TIMEX column. 12 issues for $\$ 15$. A bargain at twice the price.
Next month we will continue with other NEWSLETTERS.
In the magazine field we have a new one that is catering to TIMEX. It is K POWER. See excerpt from MAY 1984 issue on page 7. In addition FAMILY COMPUTING is continuing to run programs for both the 1000 and 2068. I hear from the grapevine that we will have a guest speaker this month on FORTH. We have several articles that will be run in the next few issues. If you write to the EDITOR he would know what you want to see in these pages. We again had contibutionsof Newsletter material from out of state. How about some HOME GROWN material?

PRESIDENTS CORNER

Well, the July meeting was well attended. We heard from the active commitees - applications, machine code, and resources - and got an update on the industry side of the coin from Jules. We had a longish break, so that people could get together and talk, and I ended the meeting with a short talk on the 2068's display file. As we were packing up, I was surprised to notice one of the members had brought an Olivetti ink-jet printer.

If you've got something new, share it with the rest of us! The best way to do that is to let me know what you ne got at the start of the meeting; we'll work it in somehow. If you need handouts for your presentation, call me the week before the meeting, and we'll work something out.

I've been encouraged by our steady attendance at meetings. It shows that CATS is doing something for the members. If you are one of those that's not showing up, let me know what you'd like to see change. This setup isn't fixed in granite there's no law that tells us what we must do. The activities that are currently going on are the results of ten people's ideas. There are a lot more members than that - let's hear your ideas.

For the next meeting, well
have a demo of that printer, as well as sundry other tidbits. Followed by: A potluck dinner/housewarming at my house, after the meeting on August 11, from 6:00 to 10:00. The address is 700 Erie Ave, Takoma Park, MD - see the map nearby. The essence of a potluck is that it's unpredictable, so bring what you think weill need. If you're uncomfortable with that idea, call me at 589-7407 and we'll tell you what sort of things are needed. You might try using this program to help you decide:

```
    10 DIM T$(6,15)
    20 LET T$(1)="SALAD"
    30 LET T$ (2)="SNACKS"
    40 LET T$(3)="DRINKS"
    50 LET T$(4)="MAIN COURSE"
    60 LET T$(5)="DESSERT"
    70 LET T$(6)=*PLATES, CUPS +
    NAPKINS*
    80 RAND 0
    90 PRINT * BRING
    ";T$(INT (RND*6+1)).
```

 Mark Fisher

MEMORY YOU CAN BANK ON

Last month I discussed the differences between 8 -, 16 , and 32 -bit processors. This subject came about from some discussions we had here on the editorial staff. During these talks, I happened to say that last month's column was not quite true since only "names" were used.

Now, I would like to explain what I meant and also introduce the computer newcomer to a subject called "memory bank switching".

It seems that, once we identify something and give it a "name", that name sticks for all time. For example, in microcomputers we have an address bus, a data bus, and a control bus.

Because "that is what it is," some people claim the address bus should be used only for addresses, the data bus only for data, and the control bus only for control signals. However, that is not quite true. As the Queen of Hearts says in Alice in Wonderiand, "a thing is what I say it is." Or, as Gertrude Stein said, "Rose is a rose is a rose is a rose."

When you read the specs on a processor, you will find one that says since the particular processor has 16 address lines, it can directly communicate with up to 65,536 bytes of memory (usually called " 64 K " or a full house).

Then you read an advertisement about a computer using the same processor and note that this particular system's claim to fame is that it can address a few hundred thousand bytes of memory.

What is even more interesting is that an 8-bit processor like the $\mathbf{Z 8 0}$ although having only 16 address lines can address up to 16 megabytes (yes, 16 megabytes) of memory.

This is where the questions start to fly. "How can this be? Who is right, and what the heck is going on around here?"'

Well, the spec sheet, advertisement, and claim are all telling the truth despite the apparent conflict. The spec sheet uses "direct" memory addressing, while the machine discussed in the ad and the claim uses what is called "bank switching" of memory.

In direct memory addressing, the processor uses all its address lines, which in
the case of 16 lines means directly addressing one "bank" of 65,536 bytes.

Bank switching means that more than one 64 K "bank" of memory cari be connected to the computer, with only one bank accessed at any one time. The computer never "sees" more than 64 K bytes.

This is possible because microprocessors based on grandfather 8080 (Z80, 8085,8088 , etc.) also use their 8 data lines to communicate with up to $256 \mathrm{~L} / \mathrm{O}$ ports none of which occupy any memory space. This is not the same as "memory mapped I/O" as used in other processors where memory addresses them-

selves are used for I/O ports.
This brings up the "names" thing. Is a data line only a data line when it is carrying data and an address line an address line only when it is carrying an address? What do you call data lines and/or address lines when they are carrying I/O instructions?

Some processors use some of the address lines to carry data signals during certain times. Now what do you call these lines?

Some processors have only 8 address lines (the 1802 for example). To address the specified 64 K of memory, the 1802 first loads the high order address bits into a latch, then when the low order address bits come out of the processor (on the same pins), the latch fires; and, wila, there are 16 address lines as if by magic. This is called "multiplexing".

By using just the lines coming from the chip, the 8080 types of processors can utilize the 16 address lines-capable of addressing 65,536 bytes of memory, and the 256 I/O ports (carried on the 8 data lines), with each port "calling" one 64 K page of memory, to address up to $16,777,216$ bytes of memory ($65,536 \times 256$).

Now, instead of the 16 address lines usually specified, simple 8080 (and family) processor can have up to 24 "address" lines, without bothering its 8 data lines. This flipping back and forth between "pages" of memory is called "bank switching."

To perform such bank switching, the software must be arranged so that, when the program needs more memory, a signal is sent to the particular bank switch output port to select the desired 64 K "page."

Obviously, you can use bank switching and as much RAM as your power supply can cope with. Although each major bank of memory will fall at 64 K boundaries, internal switching can be used to select memory blocks within any selected 64 K page.

Cassette Storage

While on the subject of memory, if you want to find out how much data you can put on a cassette, all you have to do is use the equation $(B \times S) / 8=$ kilobytes where B is the baud rate of the cassette output port (available from the computer manual) and S is the length of the tape in seconds (e.g., a 10 minute tape is 600 seconds, etc.).

There are two things to keep in mind. One is that the length of actual usable tape is less than the total length of the tape to account for gaps betwoen programs, computer lead-tone requirements, and other formatting needs. The other is that some cassettes are not as long (per side) as they are labelled.

As another example, assume 250 baud and a 20 -minute tape. This comes out to (250×1200)/8 or 37.5 kilobytes. For an Apple II having a 1200 -baud cassette port, 20-minute tape produces 180 kilobytes, 30 -minute is 270 kilobytes, etc.

MARYLAND BASED BULLETIN BOARDS

The following is a continuing list of Bulletin Boards located in the Maryland Area.

We will bring you such a list monthly for Maryland, D.C. and Northern Va.

If you make use of this list we ask that you advise the editor of any numbers that are no longer in use and new numbers that you find.

Annapolis	$301 * 267-4930$
Annapolis	$301 * 267-7666$
Baltimore	$301 * 661-2175$
Beltsville	$301 * 937-4339$
Beltsville	$301 * 344-9156$
Bethesda	$301 * 460-0538$
Cambridge	$301 * 228-4621$
Ellicott City	$301 * 465-3176$
Frederick	$301 * 371-6271$
Gaithersburg	$301 * 948-5718$
Gaithersburg	$301 * 251-6293$
Gaithersburg	$301 * 948-9143$
Glen Burnie	$301 * 768-1499$
Laurel	$301 * 953-3753$
Mt. Airy	$301 * 865-5025$
Pikesville	$301 * 653-3413$
Pikesville	$301 * 484-2831$
Potomac	$301 * 424-5817$
Rockville	$301 * 949-8848$
Silver Spring	$301 * 593-7033$

Silver Spring $301 * 593-7033$

1984

AD RATES CATS NEWSLETTER

	$1 X$	$3 X$	$6 X$	$12 X$
Full Page	$\$ 100$	294	570	1080
Half Page	55	161	313	594
Quarter Page	30	88	171	324
Business Card	15	43	81	155

(7" WIDE BY $10^{\prime \prime}$ LONG MAXIMUM SIZE. CAMERA READY MATERIAL IN BLACK AND WHITE.)

WE WIL MAIL YOUR ENCLOSURE.READY TO MAIL WITH NEWSLETTER. WE WILL CHARGE ACCORDING TO SIZE OF ENCLOSURE. ASK US FOR QUOTE AND NUMBER NEEDED. (8.5" $\times 11^{\prime \prime}$ SIZE-\$25 PER ISSUE.)

ANATOMY OF A MODEM

Throughout the communications software buyer's guide, constant reference has been made to the modem. This has made it clear that a modem is an essential piece of equipment; bere's what a modem is, and what it does, in more technical terms.

The plain and simple fact is that unless you're a Ham radio operator or will spend many thousands of dollars for data communications, you're going to communicate over the in-place telepbone network. A modem must then provide the connection to that network.

While you can transmit computer-compatible signals over wires, over long distances it gets very expensive. So most personal computer communications take place over the phone voice network. Computer-compatible signals are not voice signals, 30 must be converted for transmission.

A modem accomplishes the conversion by taling the computer's output, in the form of electrical impulses that represent ones and zeros, or "ons and offs," and changing them into audio signals that can be transmitted over voice lines. At the other end of the connection, another modem reads the tones from the telephone line and cooverts them bact into binary signala.

In actual practice, a continuous audio signal, called a carrier, is changed abruptly in pitch, so that the changes represent the presence or absence of data. The changing of this carrier is called modulation. Demodulation, at the other end, is the removal of the audio signal, which exposes the original digital impulses that the computer can understand. The term, modem, comes from combining the first few letters of modulation and demodulation.
Modulation and demodulation operate under standards that were devet oped by the telephone company. The most popular modems today follow the Bell 103 standard which sets the method of modulation and the speed of transmission, along with other parameters. Bell 103 -compatible modems can communicate at 110 or 300 baud. Baud rate is a measure of communication speed: Three-hundred baud equates roughly to 10 characters per second. As the cost of electronics decreases, more modems are becoming available that use the Bell 202 or 212 standard. These modems communicate at speeds of up to 1200 baud, or at about 40 characters per second.

There are a number of modem manufacturers serving the small-computer communications market. Their products can be classified in a number of ways, which introduces some confusion. There are direct-connect and acoustically-coupled modems. The former connect directly to the telephone line, as the name implies, while the latter connect by contact with a standard telephone handset.

Direct-connect modems can have automstic dialing and answering capebility. That is, they can initiste the tooes or pulses required to dial another telephone and recognixe when that phooe has answered (auto-dial modems); auto-answer modems can detect an incoming call on the telephone line to which they are connected, and complete the telephone circuit automatically.

Many modems available today have additional capabilities. For eximple, some can store lists of telephone numbers or complex log-on sequences. Some feature an automatic redial of busy numbers. To mont effectively control these features, you need communications software.
A modem may not be the only piece of hardware you need for data communications, however. Some modems come complete with an RS-232 interface, the most common form of small-computer connection, while othera don't. You may need to purchase such an interface, also called a serial port, so your modem can connect to your computer. If you do need to get a serial port, make sure to also get the cable that connects the port to the modem. Such cables follow an interconnect standard only loosely; getting the interface and the cable at the same time and place is one way to reduce the possibility of interconnect problems.

Manimation

Animation for the Timex

K. FOWER

By Donald Guess, Jr.

If you've ever tried to do computer animation in BASIC by drawing an image on the screen, erasing it, then drawing a slightly different image in its place, you know the results aren't great.

Even the most lightning-fast interpreted BASIC can't draw and erase a series of pictures fast enough to look like smooth motion. (The speed needed can range from 15-30 draws per second.) Superfast machine-code drawing routines (Apple shape-table graphics, for example) also can't move fast enough. But there are several ways to do computer animation effectively, even with BASIC. All of these methods use hardware functions to rapidly alter preformed images on the computer screen. This way, you don't have to draw each image separately while the animation is in progress.

Using character graphics-graphics that use the character set and display functions of your computer and BASIC-is one way to do it. This month's Pixel That! shows several techniques for doing character graphics animation on the new Timex 2068 computer. But even if you don't own a TS 2068, you can adapt the techniques shown here for your computer.

The first program, Big Flap, shows how you can do simple animation using the 2068's built-in graphics characters, plus a little string manipulation. A character array is dimensioned to contain 130 rows of five characters each. This array is then divided into 26 "frames" that are each five rows deep by five characters wide. Graphics characters are placed in these frames to look like a bat in flight.

When these frames are rapidly printed on top of each other in the same location (see lines 90-110), the effect is dramatic. The program is designed so that if you hold down any key, you can see the animation at full speed. Hands off the keyboard makes things move more slowly, letting you see each "frame" of the animation separately.

Built-in block graphics let you do some nice tricks, but they limit the amount of detail you can put in the things you animate. The 2068 offers a way around this by letting you define new character forms. This is done by bit-mapping, discussed in

THIS COULD BE YOUR AD in the Next issue

Pixel That', in the February 1984 issue (see "Roving Cupid," p. 48). Bit-mapped characters are actually tiny, fully formed pictures made up of zeros and ones of a series of binary bytes.
In the 2068. graphics characters "A-U" can be customized. Bitmaps for these characters eight bytes per character) are contained in RAM at the address stored at system variable CDG at 23675 decimal.
Redefining graphic characters by POKEing new values into their bitmaps lets you create a small library of custom shapes. These can be displayed almost immediately in any location by a simple PRINT statement.

TIMEX SINCLAIR/BIG FLAP

2068 - $48 K$ RAM

10 DIM 日S (130,5): LET $C=0$
20 FOR $\mathrm{X}=0$ TO 11: READ AS
30 FOR $Y=1$ TO LEN AS
40 LET I=INT (C $/ 5$) +1 : LET $J=6-I * 5+6$
50 IF AS $(Y)=$ "R" THEN LET $C=C+4: 60$ TO 80
60 IF AS $(Y)=" Q$ " THEN GO TO 80
70 LET BS (I,J)=CHRS (CODE AS(Y)+S3)
80 LET $C=6+1$: NEXT Y : NEXT X
90 FOR I=1 TO 126 STEP 5
100 IF INKEYS='"' THEN PAUSE 20
110 FOR $J=0$ TO 4: PRINT AT 7+J,14:3S(I+J): NEXT J:
NEXT I: GO TO SO
1000 DATA "QFAKLQFFAKQQQPQERRQGQJQQFQRQEQPQQ"
1010 DATR "RRBIGECQFQKQQQPQQRRMOQGMOGQJQQQP"
1025 DATA "Q2RRRDGQJDQQPQQRRRMHOMHOQPQQRRRR"
:D30 DATA "DOPDDERRRMMPMMRRRREMPNICQQQBRRRQ"
1040 DATA "MPMQJQQQGRRRQEPIQECQBICQQQERRQQP"
1050 DATA "QQQJQGQJQQQGRRQQPOQQJQGQFQQQKRRG"
1060 DATA "QPQQZJQGGQKQFQRRQQPQQQFQKOQFQKQR"
1070 DATA "RGMPMQQGQJQRRRQLPHAQCQEQRRQIQEQQ"
1080 DATA "LPHQRRRQOQNQQCPBARRRQPQPQAAPAARR"
1090 DATA "REHQLIQQPQQRRRBHQLCQQPQQRRQMQMQQ"
1100 CATA "FQKQAAPAARRQGQJQQFGKQQGPQQRRQFQK"
1110 DATA "QQFQKQQQPQQRRQEDIQQFQKQQQPQQRR"

 $1=4$ （2） EE
ET
E bundors E
 ET THEE
E Σ TEFIGL DGE Q OFPE 0

FEIT

 B．GYINDRICBL III E＝THEN FEINT THISMEE O：：INEHES
 $=$

[^0]$\mathrm{N}: 0$ COFE EOO C EFF E E＋4 Bfin ATGEBTE FAE $18:$ $\mathrm{C}=$ $+2=$ 370列 4 TABEG BEO． E 5

－$\ddagger=$

[^1]
 ミームF
シ
立

－ニニッ

50REEISTRIIILS FOK 231，T5 1000

THIS EIHPLE EOUTINE HFY EE BDDE TO PNY DE OUF EXISTINE FROGRAWE BNO UEEQ FO EONUERT A STRINE 704 GHARROTERS WHICH HFY THEN EE ERINTED HITH EDERT BEEED YOU GEAEVNGTBH TO ETORE GEUEAR GQREENETR PND FRINT PNIMATION TUE TGO THIE YOU UILL STUE TG EHCH THE IHE WAGE DF THE CREATE A NEM DME．

ALUPYS UEE GOTO NEUER RUN OR HOU UTL HIEE OUT YOUR HORK IS RARTTFARY RENUTEER FS EUITS YOUR NEDES．

FHIL DQUGHTY GO YILETOH
FO BOK Z113，PEDUIDENEE，RI DEQQ

0000000000000 SOFTWARE IMPRESSIONS 000000000000000 by Alan POLLOCK

PROGRAM: TS ATOR-THE ABC GATOR by Kuever, Ostrand
MACHINE: TS 1000 - 16K
AGE: 2 through 6
LOAD TIME: Part 1-6:28, Part 2-5:43
SOLD BY: Gesang Associates, Box 452 Randallstown, Md. 21133 301-922-0767
PRICE: \$5 to \$8
This is what having a TS1000 is all about.

A well thought-out compact program that does what it's supposed to, on an inexpensive computer.

Instead of watching re-runs of Family Feud or Mork and Mindy, spend some time with the young ones and load this educational program.

It seems so simple to us - the Alphabet. Why use a computer ? Because the learning process has numerous approaches and what ever works - works ! We take many paths to the mountaintop.
"ATOR" teaches, reinforces and delights the intended audience.

The program has two parts. After the first section is loaded, you sync the screen to the audio cassette and your children revel in listening to an alphabet song while watching each huge letter flash in time to the music and words. The alphabet sequence repeats for reinforcement and then tells you to load the next section for two game excercises: "Swamp Fever" and "Lost in the Swamp".

In Swamp Fever the alligator will jump all over the swamp, eating the letters of the alphabet that appear in order if the child presses the correct letter on the key board. After "Z" the exercise finishes with an alphabet graphic and a big picture of the alligator.

"Lost in the Swamp" is a beginning maze game, with a screen full of random letters with the alligator at one side and his home on the other. The object is to connect the letters of the alphabet in sequence in order to draw a path for the alligator to find his way home. The child uses the arrow keys to draw the path between letters. After "Z" the unused letters disappear leaving a clear path. "ATOR" promptly eats the path up to get home, followed by the same ending display of "Swamp Fever".

This is chunky graphics, no color, no sound, elementary movement, but...the children could care less. They learn and they have a good time.

Uncle Clive would smile about his much maligned membrane key board if he could watch my two-and-a-half year old pressing the letters with his sticky red lollypop (sugarless).

The program should be viewed as another learning tool to be used, when appropriate, by the parent.

 by Alan Pollock

TANTALIZING GAMES FOR THE TIMEX/SINCLAIR 2000 SERIES by Hal Renko/Sarn Edwards

Addison-Wesley Publishing Co. Redding, Mass. 01867

Price: Under \$5
I'd like to say that for under 5 dollars this is a smart purchase. I wanted to say that this book of 30 games gives the beginner a good break from serious computer study to have some fun while learning to type in a program.

I can't.
Renko and Edwards must have wanted to beat Steven Spielberg into print with a story about GREMLINS !!!

Mon't publishers ever learn that the most frustrating and confidencedestroying computer procedure is to punch in a program and not have it run. Right away you think the problew is you, not the book. In this case it's the book.

I stopped after carefully trying 7 or 8 games. A couple ran but mostly "variable not found" showed up. For the novice, it's not worth it.

Those of you who already have the book, please note: The U.S. publisher is aware of the problems and is contacting the authors for corrected print-outs. They have made a smart PR move by offering anyone who writes a letter of request, new print-outs of any game that is bugged. I suggest you ask for a print-out for all games. Pencils ready ? Here's where to write:

TO: Ms. Jane Tamlyn Microcomputer Division ADOISON-WESLEY Publishing Co. Redding, Mass. 01867

Book 16479
Ph:617-944-3700

Name
Address

Phone Home \qquad Office \qquad
"embersinips - \$2.00 (famil:/indiviaual);make checks parable tc C.A.T.S.
If family membership, please list family members participating:

Occupation \qquad
Ham Radio call sign \qquad
Equipment
IX 80
HA 60
Z: 81
TS 1000
IS 2000
special interest use for computer: ie, games, ham radio interface, business, other, etc. \qquad

Languages: Basic
0 her
Machine \square
No. of years computer experience
What committees would you like to serve on?

Comments: \square

Do not write below:
Pt. Pd. \qquad Amt. \qquad Membership No.
Ca.
Ck.

－人」e」q！ 7 ว！lqnd
己 fe tfuow yวe to kepantes puozas ayt vo play ase sivitadw く9く0－2ट6＊10ع

leuosuad to 人l！uet J！e！כu！s／xəw！

$$
\begin{aligned}
& \text { 日1く日て वW・ラ」nqsuəpr1日 }
\end{aligned}
$$

：s！तुणन

IIIIIIIIIIIIEII

CATS Newsletter
P．O．Box 725
Bladensburg MO 20718

buLk rate
U．S．POSTAGE
PAID
Parmir No． 40 RAMDALLSTOWN．MD．

Next CATS Meeting＋＋ 2 P．M．
Saturda＞，August 11
New Carrolton Public Library
7414 Riverdale Road，New Carrolton，MD
IF YOU ARE NOT A MEMBER OF CATS，THIS IS THE ONLY ISSUE YOU WILL RECIEUE Dues $=\$ 12$ per year，ger family．

[^0]: \square aran

 12

 EED

 700
 GHIMES
 $C=$
 $B=$
 $B=$

[^1]:

